

Dual 135µA, 14nV/√Hz, Rail-to-Rail Output Precision Op Amp

FEATURES

- 75µV Maximum Offset Voltage
- 900pA Maximum Input Bias Current
- 135µA Supply Current per Amplifier
- Rail-to-Rail Output Swing
- 120dB Minimum Voltage Gain, V_S = ±15V
- 0.8µV/°C Maximum V_{OS} Drift
- 14nV/√Hz Input Noise Voltage
- 0.4µV/Month Long-Term V_{OS} Stability
- 2.7V to ±18V Supply Voltage Operation
- Space Saving 3mm × 3mm DFN Package
- Operating Temperature Range: -40°C to 85°C

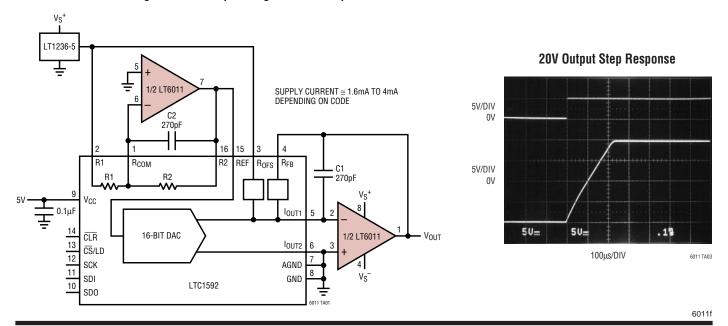
APPLICATIONS

- Thermocouple Amplifiers
- Precision Photo Diode Amplifiers
- Instrumentation Amplifiers
- Battery-Powered Precision Systems

DESCRIPTION

The LT®6011 dual op amp combines low noise and high precision input performance with low power consumption and rail-to-rail output swing.

Input offset voltage is trimmed to less than $75\mu V$. The low drift and excellent long-term stability guarantee a high accuracy over temperature and time. The 900pA maximum input bias current and 120dB minimum voltage gain further maintain this precision over operating conditions.

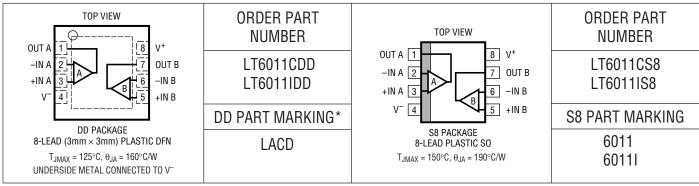

The LT6011 works on any power supply voltage from 2.7V to 36V and draws only 135 μ A of supply current on a 5V supply. The output voltage swings to within 40mV of either supply rail, making the amplifier a good choice for low voltage single supply operation.

The LT6011 is fully specified at 5V and ± 15 V supplies and from -40° C to 85°C. The device is available in SO-8 and space saving 3mm \times 3mm DFN packages.

LTC and LT are registered trademarks of Linear Technology Corporation. SoftSpan is a trademark of Linear Technology Corporation.

TYPICAL APPLICATION

Low Power Programmable Output Range 16-Bit SoftSpan™ DAC



ABSOLUTE MAXIMUM RATINGS (Note 1)

Total Supply Voltage (V ⁺ to V ⁻)	40V
Differential Input Voltage (Note 2)	10V
Input Voltage	V+ to V ⁻
Input Current (Note 2)	±10mA
Output Short-Circuit Duration (Note 3)	Indefinite
Operating Temperature Range (Note 4).	-40° C to 85° C
Specified Temperature Range (Note 5)	. −40°C to 85°C

Maximum Junction Temperature		
DD Package		125°C
SO-8 Package		150°C
Storage Temperature Range		
DD Package65°0	C to	125°C
SO-8 Package65°0	C to	150°C
Lead Temperature (Soldering, 10 sec)		300°C

PACKAGE/ORDER INFORMATION

^{*}Temperature grades are identified by a label on the shipping container. Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. $V_S = 5V$, OV; $V_{CM} = 2.5V$; R_L to OV; unless otherwise specified. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{0S}	Input Offset Voltage	LT6011S8 T _A = 0°C to 70°C T _A = -40°C to 85°C	•		25	75 100 125	μV μV μV
		LT6011DD $T_A = 0$ °C to 70°C $T_A = -40$ °C to 85°C	•		25	125 175 210	μV μV μV
$\Delta V_{0S}/\Delta T$	Input Offset Voltage Drift (Note 6)	LT6011S8 LT6011DD	•		0.2 0.2	0.8 1.3	μV/°C μV/°C
I _{OS}	Input Offset Current	T _A = 0°C to 70°C T _A = -40°C to 85°C	•		150	900 1200 1500	pA pA pA
I _B	Input Bias Current	T _A = 0°C to 70°C T _A = -40°C to 85°C	•		±150	±900 ±1200 ±1500	pA pA pA
	Input Noise Voltage	0.1Hz to 10Hz			400		nV _{P-P}
e _n	Input Noise Voltage Density	f = 1kHz			14		nV/√Hz
i _n	Input Noise Current Density	f = 1kHz			0.1		pA/√Hz
R _{IN}	Input Resistance	Common Mode, V _{CM} = 1V to 3.8V Differential		10	120 20		GΩ MΩ

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. $V_S = 5V$, OV; $V_{CM} = 2.5V$; R_L to OV; unless otherwise specified. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
C _{IN}	Input Capacitance				4		pF
V _{CM}	Input Voltage Range (Positive) Input Voltage Range (Negative)	Guaranteed by CMRR Guaranteed by CMRR	•	3.8	4 0.7	1	V
CMRR	Common Mode Rejection Ratio	V _{CM} = 1V to 3.8V	•	107	135		dB
	Minimum Supply Voltage	Guaranteed by PSRR	•		2.4	2.7	V
PSRR	Power Supply Rejection Ratio	$V_S = 2.7V \text{ to } 36V, V_{CM} = 1/2V_S$	•	112	135		dB
A _{VOL}	Large-Signal Voltage Gain	$R_L = 10k$, $V_{OUT} = 1V$ to 4V $R_L = 2k$, $V_{OUT} = 1V$ to 4V	•	300 250	2000 2000		V/mV V/mV
	Channel Separation	V _{OUT} = 1V to 4V	•	110	140		dB
V_{OUT}	Maximum Output Swing (Positive, Referred to V+)	No Load, 50mV Overdrive	•		35	55 65	mV mV
		I _{SOURCE} = 1mA, 50mV Overdrive	•		120	170 220	mV mV
	Maximum Output Swing (Negative, Referred to 0V)	No Load, 50mV Overdrive	•		40	55 65	mV mV
		I _{SINK} = 1mA, 50mV Overdrive	•		150	225 275	mV mV
I _{SC} Output Short-Circuit Current (Note 3	Output Short-Circuit Current (Note 3)	V _{OUT} = 0V, 1V Overdrive, Source	•	10 4	14		mA mA
		V _{OUT} = 5V, −1V Overdrive, Sink	•	10 4	21		mA mA
SR	Slew Rate	$A_V = -10$, $R_F = 50k$, $R_G = 5k$ $T_A = 0^{\circ}C$ to $70^{\circ}C$ $T_A = -40^{\circ}C$ to $85^{\circ}C$	•	0.06 0.05 0.04	0.09		V/μs V/μs V/μs
GBW	Gain Bandwidth Product	f = 10kHz	•	250 225	330		kHz kHz
t _s	Settling Time	$A_V = -1$, 0.01%, $V_{OUT} = 1.5V$ to 3.5V			45		μS
t _r , t _f	Rise Time, Fall Time	A _V = 1, 10% to 90%, 0.1V Step			1		μS
ΔV_{0S}	Offset Voltage Match (Note 7)	LT6011S8 T _A = 0°C to 70°C T _A = -40°C to 85°C	•		50	150 200 250	μV μV μV
		LT6011DD $T_A = 0^{\circ}C$ to $70^{\circ}C$ $T_A = -40^{\circ}C$ to $85^{\circ}C$	•		50	250 350 420	μV μV μV
ΔI_{B}	Input Bias Current Match (Note 7)	$T_A = 0$ °C to 70°C $T_A = -40$ °C to 85°C	•		250	1800 2400 3000	pA pA pA
ΔCMRR	Common Mode Rejection Ratio Match (Note 7)		•	101	135		dB
ΔPSRR	Power Supply Rejection Ratio Match (Note 7)		•	106	135		dB
Is	Supply Current	per Amplifier T _A = 0°C to 70°C T _A = -40°C to 85°C	•		135	150 190 210	μΑ μΑ μΑ

ELECTRICAL CHARACTERISTICS The ullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. $V_S = \pm 15 V$, $V_{CM} = 0 V$, R_L to 0 V, unless otherwise specified. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{0S}	Input Offset Voltage	LT6011S8 T _A = 0°C to 70°C	•		25	150 175	μV μV
		$T_A = -40$ °C to 85°C	•			200	μV
		LT6011DD			25	200	μV
		$T_A = 0$ °C to 70°C $T_A = -40$ °C to 85°C				250 275	μV μV
$\Delta V_{OS}/\Delta T$	Input Offset Voltage Drift (Note 6)	LT6011S8			0.2	0.8	μV/°C
4,09,71	impar officer voltage 2 mr (Note o)	LT6011DD	•		0.2	1.3	μV/°C
I _{OS}	Input Offset Current				150	900	pA
		$T_A = 0$ °C to 70°C $T_A = -40$ °C to 85°C				1200 1500	pA
I _B	Input Bias Current	1A = -40 C to 85 C			±150	±900	pA pA
'B	input bias outront	$T_A = 0$ °C to 70°C	•		±100	±1200	pΑ
		$T_A = -40$ °C to 85°C	•			±1500	pA
	Input Noise Voltage	0.1Hz to 10Hz			400		nV _{P-P}
e _n	Input Noise Voltage Density	f = 1kHz			13		nV/√Hz
i _n	Input Noise Current Density	f = 1kHz			0.1		pA/√Hz
R_{IN}	Input Resistance	Common Mode, V _{CM} = ±13.5V		50	400		GΩ
<u> </u>	Input Canacitance	Differential			20 4		ΩΜΩ
C _{IN}	Input Capacitance Input Voltage Range	Cuaranteed by CMDD		±13.5	±14		pF V
V _{CM} CMRR	Common Mode Rejection Ratio	Guaranteed by CMRR V _{CM} = -13.5V to 13.5V	•	115	135		dB
OWINN	Minimum Supply Voltage	Guaranteed by PSRR		113	±1.2	±1.35	V
PSRR	Power Supply Rejection Ratio	$V_S = \pm 1.35V$ to $\pm 18V$		112	135	_1.00	dB
A _{VOL}	Large-Signal Voltage Gain	$R_L = 10k$, $V_{OUT} = -13.5V$ to 13.5V		1000	2000		V/mV
AVUL	Large-Signal Voltage dam	11L = 10k, V001 = -10.5V to 10.5V	•	600	2000		V/mV
		$R_L = 5k$, $V_{OUT} = -13.5V$ to 13.5V		500	1500		V/mV
	Channel Separation	V _{OUT} = -13.5V to 13.5V		300 120	140		V/mV dB
V _{OUT}	Maximum Output Swing	No Load, 50mV Overdrive		120	45	80	mV
V001	(Positive, Referred to V ⁺)	No Load, John Overdrive	•		40	100	mV
		I _{SOURCE} = 1mA, 50mV Overdrive			140	195 240	mV mV
	Maximum Output Swing	No Load, 50mV Overdrive			45	80	mV
	(Negative, Referred to V ⁻)	No Loud, Comit Cvordino	•		10	100	mV
		I _{SINK} = 1mA, 50mV Overdrive			150	250 300	mV mV
I _{SC}	Output Short-Circuit Current (Note 3)	V _{OUT} = 0V, 1V Overdrive (Source)	•	10	15	300	mA
'SC	Output offort-official outrefit (Note 5)	VOUT = 0V, TV OVERUTIVE (Source)	•	5	10		mA
		$V_{OUT} = 0V, -1V$ Overdrive (Sink)	•	10 5	20		mA mA
SR	Slew Rate	$A_V = -10$, $R_F = 50$ k, $R_G = 5$ k		0.08	0.11		V/µs
	3.5	$T_A = 0$ °C to 70°C	•	0.07	Ų.,,		V/µs
		$T_A = -40$ °C to 85°C	•	0.05			V/µs

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. $V_S = \pm 15V$, $V_{CM} = 0V$, R_L to 0V, unless otherwise specified. (Note 5)

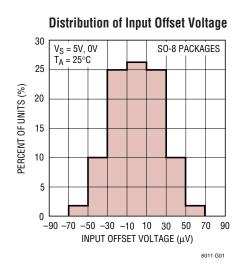
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
GBW	Gain Bandwidth Product	f = 10kHz	•	275 250	350		kHz kHz
t_s	Settling Time	$A_V = -1$, 0.01%, $V_{OUT} = 0V$ to 10V			85		μS
t _r , t _f	Rise Time, Fall Time	A _V = 1, 10% to 90%, 0.1V Step			1		μS
ΔV _{0S}	Offset Voltage Match (Note 7)	LT6011S8 T _A = 0°C to 70°C T _A = -40°C to 85°C	•		50	300 350 400	μV μV μV
		LT6011DD T _A = 0°C to 70°C T _A = -40°C to 85°C	•		50	400 500 550	μV μV μV
ΔI_{B}	Input Bias Current Match (Note 7)	T _A = 0°C to 70°C T _A = -40°C to 85°C	•		250	1800 2400 3000	pA pA pA
ΔCMRR	Common Mode Rejection Ratio Match (Note 7)		•	109	135		dB
ΔPSRR	Power Supply Rejection Ratio Match (Note 7)		•	106	135		dB
I _S	Supply Current	per Amplifier $T_A = 0^{\circ}C$ to $70^{\circ}C$ $T_A = -40^{\circ}C$ to $85^{\circ}C$	•		260	330 380 400	μΑ μΑ μΑ

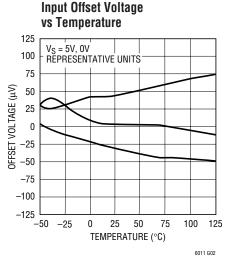
Note 1: Absolute Maximum Ratings are those beyond which the life if the device may be impaired.

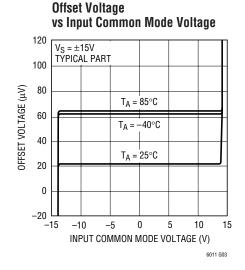
Note 2: The inputs are protected by back-to-back diodes and internal series resistors. If the differential input voltage exceeds 10V, the input current must be limited to less than 10mA.

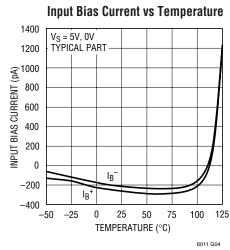
Note 3: A heat sink may be required to keep the junction temperature below absolute maximum ratings.

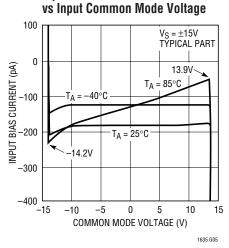
Note 4: Both the LT6011C and LT6011I are guaranteed functional over the operating temperature range of -40° C to 85°C.

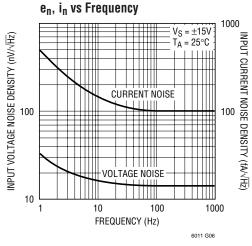

Note 5: The LT6011C is guaranteed to meet the specified performance from 0°C to 70°C and is designed, characterized and expected to meet

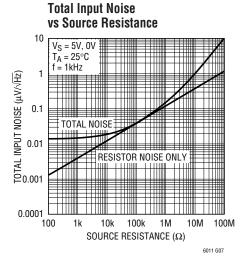

specified performance from -40°C to 85°C but is not tested or QA sampled at these temperatures. The LT6011I is guaranteed to meet specified performance from -40°C to 85°C .

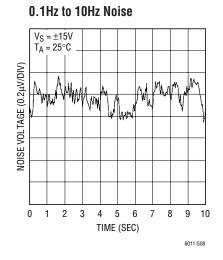

Note 6: This parameter is not 100% tested.

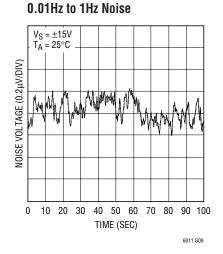

Note 7: Matching parameters are the difference between the two amplifiers. Δ CMRR and Δ PSRR are defined as follows: (1) CMRR and PSRR are measured in μ V/V for the individual amplifiers. (2) The difference between matching amplifiers is calculated in μ V/V. (3) The result is converted to dB.



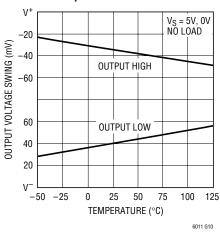


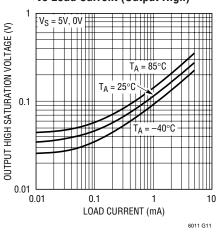




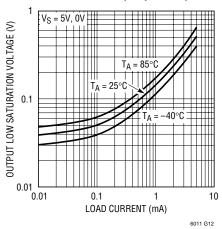


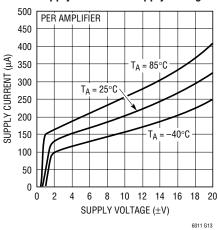
Input Bias Current

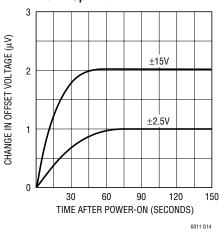


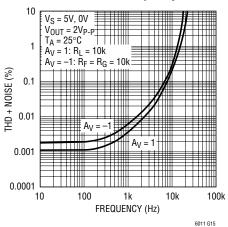


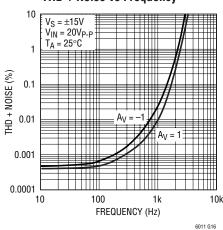
6011f

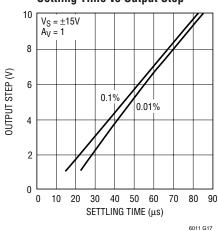


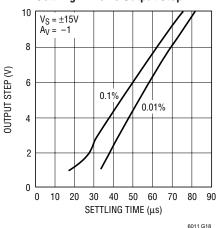

Output Saturation Voltage vs Load Current (Output High)

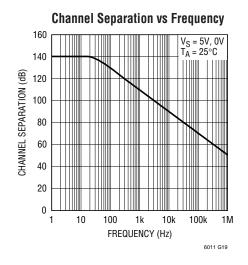

Output Saturation Voltage vs Load Current (Output Low)

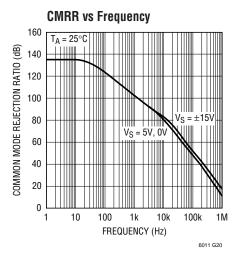

Supply Current vs Supply Voltage

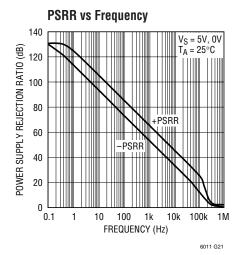

Warm-Up Drift

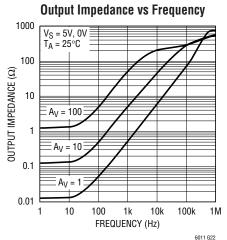

THD + Noise vs Frequency

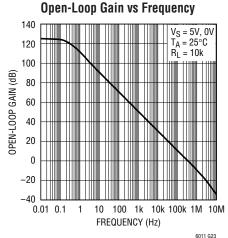

THD + Noise vs Frequency

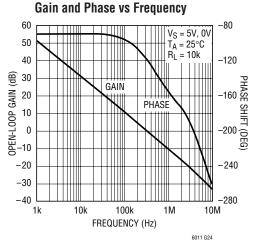

Settling Time vs Output Step

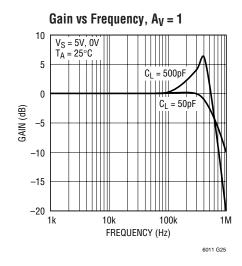


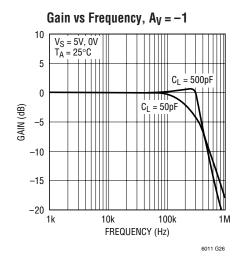

Settling Time vs Output Step

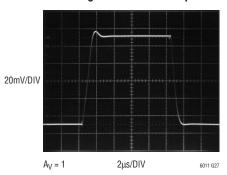


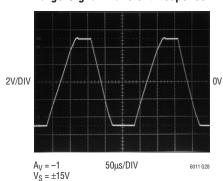




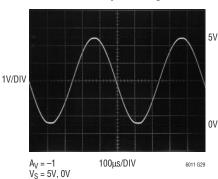








TLINEAR


Small-Signal Transient Response

Large-Signal Transient Response

Rail-to-Rail Output Swing

APPLICATIONS INFORMATION

Preserving Input Precision

Preserving the input accuracy of the LT6011 requires that the applications circuit and PC board layout do not introduce errors comparable to or greater than the 25µV typical offset of the amplifiers. Temperature differentials across the input connections can generate thermocouple voltages of 10's of microvolts so the connections to the input leads should be short, close together and away from heat dissipating components. Air currents across the board can also generate temperature differentials.

The extremely low input bias currents (150pA typical) allow high accuracy to be maintained with high impedance sources and feedback resistors. The LT6011 low input bias currents are obtained by a cancellation circuit on-chip. This causes the resulting $\rm I_B^+$ and $\rm I_B^-$ to be uncorrelated, as implied by the $\rm I_{OS}$ specification being comparable to $\rm I_B$. Do not try to balance the input resistances in each input lead; instead keep the resistance at either input as low as possible for maximum accuracy.

Leakage currents on the PC board can be higher than the LT6011's input bias current. For example, $10G\Omega$ of leakage between a 15V supply lead and an input lead will generate 1.5nA! Surround the input leads with a guard ring driven to the same potential as the input common mode to avoid excessive leakage in high impedance applications.

Input Protection

The LT6011 features on-chip back-to-back diodes between the input devices, along with 500Ω resistors in series with

either input. This internal protection limits the input current to approximately 10mA (the maximum allowed) for a 10V differential input voltage. Use additional external series resistors to limit the input current to 10mA in applications where differential inputs of more than 10V are expected. For example, a 1k resistor in series with each input provides protection against 30V differential voltage.

Input Common Mode Range

The LT6011 output is able to swing close to each power supply rail (rail-to-rail out), but the input stage is limited to operating between $V^- + 1V$ and $V^+ - 1.2V$. Exceeding this common mode range will cause the gain to drop to zero, however, no phase reversal will occur.

Total Input Noise

The LT6011 amplifier contributes negligible noise to the system when driven by sensors (sources) with impedance between $20k\Omega$ and $1M\Omega$. Throughout this range, total input noise is dominated by the $4kTR_S$ noise of the source. If the source impedance is less than $20k\Omega$, the input voltage noise of the amplifier starts to contribute with a minimum noise of $14nV/\sqrt{Hz}$ for very low source impedance. If the source impedance is more than $1M\Omega$, the input current noise of the amplifier, multiplied by this high impedance, starts to contribute and eventually dominate. Total input noise spectral density can be calculated as:

$$v_{n(TOTAL)} = \sqrt{{e_n}^2 + 4kTR_S + (i_nR_S)^2}$$

60111

APPLICATIONS INFORMATION

where $e_n=14nV/\sqrt{Hz}$, $i_n=0.1pA/\sqrt{Hz}$ and R_S is the total impedance at the input, including the source impedance.

Capacitive Loads

The LT6011 can drive capacitive loads up to 500pF in unity gain. The capacitive load driving capability increases as the amplifier is used in higher gain configurations. A small series resistance between the output and the load further increases the amount of capacitance that the amplifier can drive.

Rail-to-Rail Operation

The LT6011 outputs can swing to within millivolts of either supply rail, but the inputs can not. However, for most op amp configurations, the inputs need to swing less than the outputs. Figure 1 shows the basic op amp configurations, lists what happens to the op amp inputs and specifies whether or not the op amp must have rail-to-rail inputs. Select a rail-to-rail input op amp only when really necessary, because the input precision specifications are usually inferior.

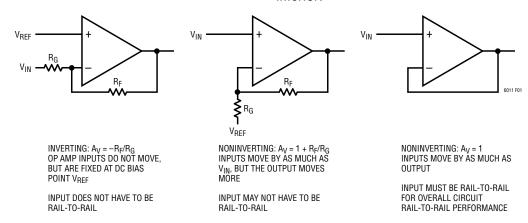
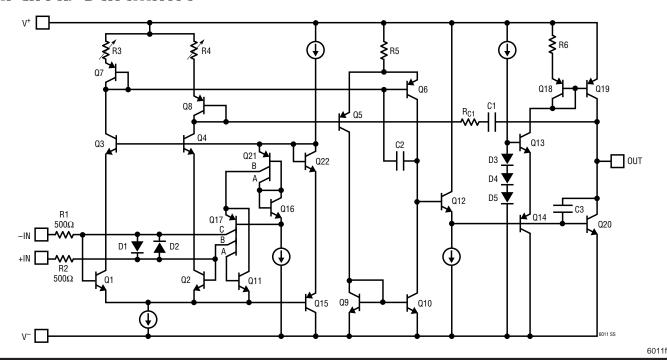



Figure 1. Some Op Amp Configurations Do Not Require Rail-to-Rail Inputs to Achieve Rail-to-Rail Outputs

SIMPLIFIED SCHEMATIC

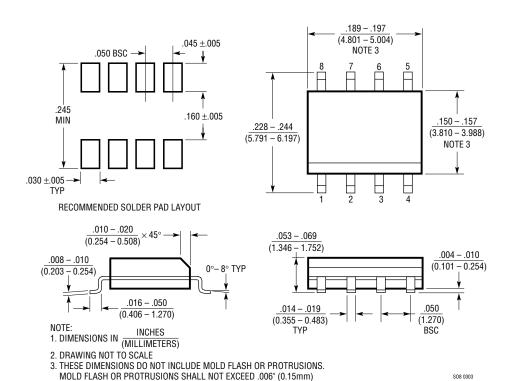


T LINEAR

PACKAGE DESCRIPTION

DD Package 8-Lead Plastic DFN (3mm × 3mm)

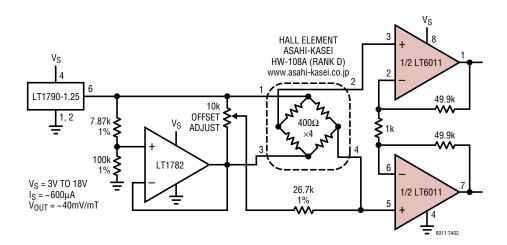
(Reference LTC DWG # 05-08-1698)



RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

- 1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)
- 2. ALL DIMENSIONS ARE IN MILLIMETERS
 3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE
- 4. EXPOSED PAD SHALL BE SOLDER PLATED

S8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch)


(Reference LTC DWG # 05-08-1610)

TYPICAL APPLICATION

Low Power Hall Sensor Amplifier

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1112	Dual Low Power, Picoamp Input Precision Op Amp	250pA Input Bias Current
LT1880	Rail-to-Rail Output, Picoamp Input Precision Op Amp	SOT-23
LT1881	Dual Rail-to-Rail Output, Picoamp Input Precision Op Amp	C _{LOAD} Up to 1000pF
LT1884	Dual Rail-to-Rail Output, Picoamp Input Precision Op Amp	9.5nV/√Hz Input Noise